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We examine a class of problems in which the pay-off is some function of the 
terminal state of a conflict-controlled system. When the opportunities of one 

of the players are small in relation with the opportunities of the other, we pro- 

pose methods for constructing approximate optimal strategies of the players, 
based on solving the Bellman equation containing a small parameter. We have 

shown that the players’ approximate optimal strategies can be constructed ifthe 

solutions of the corresponding optimal control problems are known. The error 

bounds for the methods are proved and examples are considered. The arguments 
used rely on the results in [l-6] on the theory of differential games and on 

[7- 111 devoted to optimal control synthesis methods for systems subject to ran- 

dom perturbations of small intensity. 

1. Strtrment of the problem, Let the motion of a conflict-controlled 
system be described by the nonlinear equation 

dx 
- = F (2, t, u, v), 
dt u E P, u E Qc, 5 [to] = 20, t E [to+ T1 ( 1.1) 

Here z is an n-dimensional vector, II and v are r-dimensional control vectors ofthe 
first and second players, respectively, P and Qc are closed bounded sets, F is a con- 
tinuous function satisfying a Lipschitz condition in x and v. The pay-off is the quantity 

f [x( T)1 determined at the terminal instant t= Tin the position t ( T) realized. The 
first player tries to minimize f [Z (T)] under the most unfavorable behavior of the 
second player. The second player’s task is to guarantee the game’s completion with 

the largest possible value of the pay-off. We assume that the opportunities of one of 
the players are small in comparison with the opportunities of the other. Namely, we 
assume that the set QE can be contained within an r-dimensional sphere of radius e 
small in relation to the minimal radius of the sphere which can contain set P. We 
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assume, further, that the right-hand side of system (1.1) satisfies the conditions from [l] 

I X’P (G 4 4 d I < h (1 + 1.z jr>, 24 E p, 2, E QL, h = coust (1.2) 

Function u (x, t) which for any possible position (2, t) sets in correspondence a 

closed set u (x, t) C P is called the strategy of the first player [2, 33. Set u (x, t) 

is assumed to be upper semicontinuous with respect to the inclusion at ( x, t ). The 

class of functions u (x, t) which specify admissible strategies of the second player is 

similarly defined. 

2 , It 8 I: (, t i on m 8 t h o d , We consider the class of differential games described 
in Sect. 1 and having a saddle point. The following result is valid ( [4], Theorem 3). 

Lemma. Let there exist a continuously differentiable function S (z, t) which for 
all z and t satisfies the boundar)Fvalue problem 

S, + min,max, {(F (z, t, 24, v), 8,)) = S, + 

max,min, {(F (5, t, u, u), S,)} = 0 

S (x, T) = f (x), u E P, u E Qc 

(2.1) 

Here 8, = (s,,, . . . . 83~~) is the vector of first partial derivatives with respect to 5, 

S, is the partial time derivative. Then, the set U* (x, t) of vectors U* and the set 
U* (x, t) of vectors u*, providing the minimax and the maximin in (2.1) are such 
that the strategies U* @z, t) and V* (z, t) are the minimax and the maximin strate- 

gies of the first and second players, respectively ; the strategy pair (u* (5, t), u*(x, t)) 
provides the saddle point of the game being examined. 

introducing the notation 

min,max, {(F (I, t, 24, u), S,)} = max, min,, {(F (z, t, q, 
4 &)) = H (z, t, u*, u*, &I 
u E P, VE Qc 

(2.2) 

we construct the following iteration process. 
Selecting a strategy u” (z, t) E 0 we consider the boundary-value problem 

Go + min, {(F (t, t, u, u”), S,‘)} = 0, S* (5, T) = f (x), u e P (2.3) 

Assuming that the solution of this problem exists and is continuously differentiable we 
find the strategy u” (z, t) from. the condition 

min,, {(F (z, t, u, u”), S,‘)} = H (x, t, u”, u”, S,‘), u E P (2.4) 

A new strategy r,9 (x, t) for the second player is found from the condition 

max, {(F (2, t, u”, u), S,O)} = H (x, t, u”, ul, S,‘), u E QL (2.5) 

The strategy U” (z, t) defined in (2.3) and (2.4) is called the first-player’s approxi- 
mate strategy in the zero approximation. The strategy u1 (2, t) is called the second 
player’s approximate strategy in the first approximation. The next step of the iteration 
process is to solve the boundary-value problem 

St1 -t min,, {(F (z, 6 u, u’), S,l>) = 0, S’ (G T) = f (4, u E P (2.6) 
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As before, by assuming the existence and continuous differentiability of the function 
Si, we fmd the first player’s strategy U’ (x, t) from the condition 

minX4 {(P (G 4 u, u’), S,l)) = H (z, t, u.1, ul, &I), u. E P (2.7) 

Strategy ~1 (2, i) is called the first player’s approximate strategy in the first approxi- 
mation. A new strategy us (z, t) for the second player is found from the condition 

max, ((F (z, t, z&l, v), Sd)) = N (z, t, u’, ve, &I), u E Qc (2.6) 

Using relations (2.5) and (2.7) and arguing as in [S] (Theorem 1). we can show that 
the strategies u* (z, t) and fi (z, t) thus found are admissible in the sense defined 
in Sect. 1. Using (2.7) we write the boundary-value problem (2.6) as 

S*l + H (z, t, 111, d, S,l) = 0, s1 (z, T) = f (z) (2.9) 

Let us estimate the difference between the Bellman function S and function Sr. For 
this we consider the function 

alL (3, t) = w (2, t, 29, I+, S,l) - H (2, t, d, va, S,l) < 0 

The inequality 

f cq 1 = I ((F (s, t, d, 79) - p (s, t, ul, at 82 1 1 \c 
11 F (2, t, ul, v”) - F (2, t, ur, 9) i IS; II< 17’ n u1 - 
fl II I &cl II s C’e (1 + II = I”,” 

is valid assuming that 

Therefore 
1 Sri 1 < cs (1 + 1 x 11 *)m* c, cl, 8 = con& (2.10) 

0 > a? a 4% (1 + 0 = II”)” 
The following result is valid, 

Theorem 2. 1. Let continuously differentiable solutions of problems (2.1) and 
(2.9) exist and let estimate (2.10) be fulfilled. Then the inequality 

0 < s (x, t) - S1 (x, t) < (Am)-%C IekmfT-f@) - 11 (1 + (2.11) 

11 x 11 2)m, h = const 

is valid, 
Proof . Taking notation (2.2) into account, we write boundary-value problem (2.1) 

as 
St + H (x, t, u*, v*, SJ = 0, s (x, 2-j = f (x) (2.12) 

From the Lemma’s result it follows that the strategy pair (u* (2, t), v* (x, t)) provides 
the saddle point of the game being exami&. Therefore, the inequaLity 

H (2, 4 u*, ~1, S,) f H (z, t, 24*, u*, S,) < H (2, t, 3, u*, s,) (2.13) 
is valid. On the other hand, from the definition of strategy 9 (cc, t) in (2.8). allowing 
for the notation introduced for CC~~, we obtain 

(2.14) 

H (z, 4 u”, d, &Cl) = H (2, t, d, 9, S,l) - CzlC (x, t) > H (2, t, 22, u*, s;> 

Further, the inequality 

H (5, t, nl* d, W) < H (2, t, rJ*, u’, S,l) (2.15) 
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follows from (2.7). Using the second of inequalities (2.13) and Eq. (2.12). we obtain 

1st + H (2, t, ul,u*,Sx)>o, S@J)=f(z) (2.16) 

The fulfillment of inequality 

Stl + H (r, t, u*, u*, sa> < - ccic (5, t), s (5, T) = f (4 (2.17) 

follows from inequality (2.14) and Eq. (2.9). Subtracting inequality (2.17) from (2.16), 
we obtain an inequality and a boundary condition for the function 2 = S - 6 

21 + H (3, t, 29, v*, 2,) > a,C (2, t), 2 (z, T) = 0 (2.18) 

This means (see [4], for exapmle) that for almost all E E ito, ?‘I the inequality 

dz (r M, t) I dt > ale (z, t) > -ce (1 + (1 5 It1 [[a), 2 (3, T) = 0 (2.19) 
is fulfilled for any motion x [t] = x [t, x0, to, ul, v*l . Here the derivative is com- 
puted along the motion z [tl. The existence of this derivative for almost all t > to 
follows from the continuons differentiability of functions S and S1 and from the abso- 
lute continuity of the motions [4]. 

Using inequality (1.2) and the original equation (1, l), we obtain the valid estimate 

(1 + 11 5 ttl 18)” < (1 + 11 x0 ~)memh(t-t*% t E [to, 27 (2.20) 

Here a is the constant appearing in estimate (1.2). Integrating inequality (2.19) from 
t, to T and allowing for (2.20) and the boundary condition Z (x, T) = 0, we oh- 

tain the inequality 
s (x0, to) - S1 (x0, to) < (in)-leC [ehm(TMt*) - 11 (1 + 1 50 II”)” (2*21) 

Using the first of inequalities (2. X3) and Eq. (2.12), and next the inequality (2.15) and 
Bq. (2.9), we obtain 

St + H (2, t, u*, ul, SJ < 0, S (x, T) = f (x) 

s: + H (x, t, u*, ul, S,l) > 0, S1 (2, T) = f (4 

Subtracting inequality (2.19) from (2.18). we obtain an inequality and a boundary con- 
dition for the function Z1 = 5’1 - S 

dZ1 (x [tl, t) / dt > 0, 27 (2, T) = 0 (2.22) 

for any motion 5 [ tl = 5 [t, zo, u*, vl]. Analogously to (2.21) the inequality 
S - S ( 0 follows from (2.22). We obtain inequality (2.11) by taking (2.21) 
into account. 

Corolla r y . If arc (z, t) = 0, the strategy pair (u’ (x, t), u1 (x, t)) provides 
the saddle point of the game being ewmined. 

Proof. In this ase it follows from inequality (2.11) that S = S1. Therefore, the 
equalities 

St + H (2, t, 3, vl, S,) = 0, S (a, T) = f (3) 

are valid. By virtue of the hemma’s result the latter means that the strategy pair 
(3(x, t), V’(X, t))provides the saddle point of the game being examined, 

N o t e 1. Inequality (2.11) shows to what extent the value of the Bellman function 
3’ at point (z, L) differs from the minimal value of the pay-off functional, which can 
be achieved by the first player under the initial conditions x = z,,, t = to in problem 
( 1.1) when the second player applies the strategy ~1 (t, t) defined in (2.5). 
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N o t e 2. We can consider another iteration process. For this we select some strategy 
ZP (0, t). (As uo (t, t) we can take, for example,the strategy obtained at the first step 
of the iteration process considered earlier). 

Consider the boundary-value problem 

WP + max, {(F (z, t, u”, v), W,O)} = 0, W (a+ T) = f (4 

v E Qc 

We find a strategy v” (z, t) from the condition 

ma=, { (p (5, t, IL*, v), wro) 1 = H (z, t, u”,vo, IV,“), v E Qc 
We find a new strategy u1 (z, t) of the first player from the condition 

min, {(F (z, t, U, v”), w,o)} = fz (z, t, d, v”, W,“), u fz P 

We find the functionW%md the strategies v1 and 3 analogously. Consider the function 

fiic (2, t) = H kc, t, d, vl, Iv,‘) - H (3, t, d, d, W,‘) 

It is clear that pre (2, t) > 0. Assume the validity of the estimate 

From the construction of the iteration process it is clear that K (8) = 0 when e=O. 
HoweverSin this case it is impossible to guarantee that K (e) + 0 as e + 0. Using 
the same arguments as in the proof of Theorem 2.1 we can prove the validity of the 
inequality 

-(hn~)-~K (e) [e’m(T-to) - 11 (1 + II x II”>” < s - w < 0 
This estimate shows to what extent the value of the Bellman function S at point (+ t) 
differs from the maximal value of the pay-off functional. which can be achieved by the 
second player under the initial conditions z =zo, t = to inproblem(l.l)whenthe 
first player applies the strategy 3 (2, t) obtained at the first step of the iteration pro- 
cess described. As we noted earlier, the effectiveness of this estimate is small because 
K (e) may not tend to zero as e + 0. 

N Q t e 3 . The conditions of continuous differentiability of functions S and W can 
be weakened if we take advantage of the result of Theorem 2.1 of [S]. 

8. Small-paramatar mathod, We assume that the set Qc considered in 
Sect. 1 is a sphere of radius e in an r-dimensional space. Here e is a sufficiently 
small number. hoblem (1.1) is then reduced to the form 

dxf& = p (x, t, u, ev), u E P, v IZ Q1 

Here Q1 is the unit sphere in the r-dimensional space. For solving this problem we 
apply the method proposed in [S-9]. 

We consider the minimax problem assuming the existence of a twice continuously 
differentiable solution of the boundary-value problem 

St + H (2, t, &; d = 0, s c& T) = f (4 (3.1) 

H (2, t, 8,; e) = min,max, {(F (z, 1, u, e,v), S,)}, UEP (3.2) 

v fz QI 
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According to the result of Theorem 1 from [43, the set of vectors U* (2, t) providing 
the minimum in (3.2) determines the first player’s mlnimax strategy, 

Let the condition be fulfilled: 
1) the function H (z, t, s,; 6) is continuous together with its derivatives with 

respect to S, and 8 up to second order, inclusive. We seek the solution of problem 
(3.1) as an expansion in powers of parameter E 

s (z, t) = s” (3, t) + es1 (z, t) -/- . . . 

We represent the function W in the form 

(3*3) 

w (X, t, s,; a) = H (2, t, S,“; 0) + eI& (z, t, srO; 0) + (3.4) 

6 (VH (5, t, S,O; O), S,l) + . . . 

H, =g H (‘2, 8, sa; 4 

Here VH is the vector of pstiat derivatives with respect to the components of vector 
Sra Substituting expansion (3.3) into (3.1) and limiting ourselves only to terms of first 
order in e, we find that function 8” is the soh~tion of the boundary-value problem 

% + H (z, t, Sx”; 0) = 0, s” (3, T) = f (z) (3,s) 

Here we assume that 
2) the solution of boundary-value problem (3.5) exists and has modulus-bounded 

continuous derfvatives in 3 up to second order, inclusive. 
The function Sl from expansion (3.3) is the solution of the problem 

St1 + (VH (r, t, 8,“; O), J&l) + H, (X, t, SrO; O}==O, S1 (z, T)=O (3.6) 

The first-approximation equation (3.5) is the Bellman equation for the original problem 
which for e I 0 can be treated as an optimal control problem. We shall assume that 
this problem is solved, i. e. we shall find the synthesis of the optimal control u* (5, t), 
the function LF (.z, t) , and the corteponding field of optimal trajectories 

5 = 9 (4 Y) (3.7) 

Here Ip (t, r/) is a vector-valued function, y is an n-dimensional vector of arbitrary 
const&uts. In addition to the a~mpti~ already made we assume the ~lf~~e~t of 
the following condition: 

3) equality (3.7) can be solved relative to p,* i. e. we can obtain the relation 

Y = Q, (;ct t) (3.8) 

In order to solve the boundary-value problem (3.6) defining the second approximation 
we write out the system of equations determining the characteristics of.Eq. (3.6) 

t&r/& = - VH (r, t, S,“; 0), dSVdt = - H, (z, t, ,!I&*; 0) (3.9) 

Taking into account the notation (3.2) introduced and the known equality SJo =: -p 

(p is the vector of adjoint variables for the original system when a = O), we note that 
the first equation in (3.9) defines, according to the maximum principle, the optimal 
trajectories of the original system wit& e = 0, The solution of the first equation from 
(3.9) is given by equality (3. ?), while the system of first integrals is given by equality 
(3.8). As follows from (3.7)-(3.9), the general solution of Cauchy problem (3.6) is 
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determined by the expression 
t 

,F (2, t) = - j H, (E, r, s,o (ET 4; 0) d-t (3.10) 
tr 

(3.11) 

The first and second players’ strategies in the first approximation are found from the 
condition 

min,max, {(F (5, t, u, ev), S,’ + 8B)) = (F (2, t, z4’, ev’), (3.12) 

&co + Gc’) = H (x, t, S,’ + eSxl; e), u E P, v E Q1 

Equalities (3.3) and (3.7)-(Q. 12) determine explicitly the approximate solution of the 
Bellman Eq. (3.1) and certain players’ strategies if the solution of the corresponding 
optimal control problem is known. In the next theorem we have indicated the error 
bounds for the functions s” and s” + 881. 

T h e o r e m 3. 1. Let conditions (l)-( 3) be fulfilled. Then the bounds 

IS--kYS”<CC,8, IS--X---eS1 I<W (3.13) 

with certain constants Ck (k = 1, 2) are valid for t E 1 to, 2’1 and x E Rn . 
P r oo f . From condition (1) and equality (3.3) follows the validity of the expansions 

H (5, 1, 8,; 8) = H (5, t, szo; 0) + e& (5, t, S,O; 81) + (3.14) 

(VH (x, t, MI; 81, s, - &Y 

Here 

H (x, t, &; 8) = H (x, t, S,O; 0) + (VH (5, 1, sxo; O), 

& - &‘) + 8f& (2, t, &co; 0) + 8 (v& (3, t, &‘; h), 

& - &co) + (N (5, t, M,; 8) (& - &?, 8, - &c? -t 
8% (2, 1, 8x0; 8s) 

Ml =s~+e,(s,-ssxq, 0<81<1, i =i,2, 

O<ej,<e, k = ‘i, 2, 3 
Using expansions (3.14), from (3.1) and (3.5) we find that the function 2 = S - S@ 
satisfies the boundary-value problem 

zt + (VH (z, t, hf,; 4, 2,) = --eH, (X, t, &?; 4 (3.15) 

2 (2, T) = 0 

Hence,allowing for the bcnmdedness of the function H,, we obtain the first of inequal- 
ities (3.13). 

Let us now shoy that the bound 

I 8% - &* 1 < (7’8, C’ = const (3.16) 

is valid. Using conditions (1) and (2) we differentiate Eq. (3.15) with respect to the 
variable x; and we denote w’ = Z,... We obtain the bamdary-value problem for the 
system of equations 

wti + (VH,, (2, t, M,; e), W) + (VH (5, t, M,; 8), LD,‘) = (3.17) 
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wi(x, T) =0, i =I,. . .,n; w =(wl,. . ., w”) 

Equation system (3.17) is linear ; therefore, because the functions OH, / &q are boun- 
ded, we obtain the estimates 

IWiI<Cie, i=l,...,n 

with certain constants ci. Hence follows inequality (3.16). Using expansions (3.14) 

and Eqs. (3.5) (3.6) and (3.1) we obtain the boundary-value problem for the function 
zf = s - S” - es 

z,l + (VH (x, t, SC; O), 2,‘) = - eaH,c (2, 4 Szc”; e,) - 
e (VH (5, t, S,“; ea), S, - Szo) -I- (A’ (x7 t; M2; e) X 

(Szc - SsO), S, - IT,“), 2? (x, T) = 0 

Taking into account the proved inequality (3.16), we find that the right-hand side ofthe 
last equation is a quantity of order 0 (e”) ; consequently, the second bound in (3.13) is 
valid with some constant C,. 

J3y W (x, t) we denote the solution of the boundary-value problem 

W, + (F (2, t, u’,a+), WJ = 0, W (2, T) = f (5) (3.18) 

Here 3 (x, t) and ti (3, t) are the first and second players’ strategies in the first 
approximation, found from conditions (3.12). 

Theorem 3, 2. Let conditions ( 1) -(3) be fulfilled, Then the estimate 

IS-W(<Ce2 (3.19) 
is valid for function w 

Proof. Wedenote E = W - S - eS1. From (3.18),(3.5) and (3. G),allowing 
for notation (3.12). we find that the right-hand side of the last equation is a quantity of 
the order of es. Therefore, the inequality 

1 w - so - es’ 1 < C#, cr = mnst (3.20) 

is fulfilled with some constant. Using inequality (3. BOXand the inequality (3.13) proved 

in Theorem 3.1, we obtain the validity of (3.19). 
Let us consider examples illustrating the constructions made. 

1’. Let the motion of a conflict-controlled object be described by the equation 

day/dP = u (1 + II), y (0) = yet y’ (0) = yo’, t E [O, Tl 

Hereyisascalarandthecontrolstakethevalues lul<l and Ivlba<l. 
As the pay-off we examine the quantity 1~ (T)P. We introduce a new variable .?: = 
y’ (T - t) -/- y. The original equation takes the form 

dxldt = (T - t)u (1 + v), z (0) = to 

Under such a change of variable the pay-off functional preserves its form, namely, 
[z (T)P. Let us construct the first and second players’ approximate strategies, using the 
results of Sect. 2. We set v“ z 0. The function S” and the strategy uCare determined 
from the solution of the boundary-value problem 

ST0 = t,;&{lls,“} = - z ISJ, lY(Ic, 0) = 22 
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Here T - t = ‘5 is reverse time, U’ = -sign &*. The solution of this problem is 

s”= 
( 

flzI--/221s, ixj>r~/Z 
0 9 izl<r*/2 

Strategy u” is uniquely defined in the region 1 z 1 > 7’ / 2, where U’ = -sign X, 
and nonuniquely in the remaining part of the region. Strategy u’ is found from the con- 
dition max {u” (1 + 0) 8,“) 

l4is 
whence it follows that d = - 8 in region 1 x 1 > 78 / 2. Strategy v’ is determined 
ambiguously in the region 1 X 1 < Ta / 2 . Accordong to Sect. 2 strategy d is the se- 
cond player’s approximate optimal strategy in the first approximation. We complete 
the definition of strategy vl in the region 1 5 1 < za / 2 by setting d = - e and 
we find the function ,S and the strategy ~1. It can be verified that the function olc(X, 
t) is such that 

at’ fX, 4 = U1 (1 + v’)S,’ - r&i (1 + vB)S,f = 0 

By virtue of inequality (2.11) Sl = S is the Bellman function of the problem being 
analyzed. According to the Corollary the strategy pair (u” (2, 0, vl (x, t)) provides 
the saddle point. 

2”. Let-us consider a planar controlled motion with a gap 

&fdt = x3, clzsldt = -x8 + ul cos v - us sin v 

dxpjdt = x4, d&,ldt = - x4 + u1 sin v + ur co8 v 

tE lo, Tl, Xt (0) = Xi., i = 1, 2, 3, 4 

The first player’s aim is to choose a control u, subject to the constraint uls + r&s < 1, 
so as to minimize the value of a functional of the terminal state 

J = +I” (T) + xea P’) 

The second player’s aim is to minimize the value of functional J by choosing% (the 
gap) such that 1 v 1 < E < x / 2 . We shall solve the minimax problem by applying the 
small-parameter method presented in Sect. 3, and assuming e to be a fairly small num- 
ber. We seek’&. solution of the Bellman equation in the form.,!? = so + ES f . . . 
The bounda~value problem for the function s”, being the first approximation, is 

Here ?’ - t = z is reverse time. Computing the. minimum, we obtain 

min 
ur=+u¶K1 

{uJ,” + u&,“} * - ‘G/[Sx,o]8 + [S,,c]z = R 

achieved on a vector r.P with components 

l&r0 = s”,,R, U; = Sc;,lR 

The boundary-value problem for the second approximation is 

S,’ = x&, + x,s:, - xss:, - x& +rQs:* c U,oSZ, 

s1 (2, 0) = 0 
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From the uniqueness of the solution of the Cauchy problem for first-order hyperbolic 
partial differential equation it follows that 8’ (5, t) = 0. By direct verification it is 
easy to see that the function S’, satisfying the boundary-value problem for the first 
approximation, is given by the expression 

S’ (z, t) = {[a+ + (1 - e-T)z312 + 1s~ + (1 - eFr )LZT~:,]~}‘~~ + (CT + T) - 1 
Hence it follows that 

u,O= - 
x1-(i- CT)23 

w , uzo= - 
52 f(1 - CT)24 

W 

W = {h, + (1 - e-~)s,12 + Is + (1 - e)-YJ2}‘/~ 

We find the approximate minimax strategy and the second player’s strategy from the 
condition (3.11) 

min, max,{cos u (urS,,“+ z+!&,o)+ sin u (4S~,~-~2&~)) = 

min, max, {l/[ S,“12+ IS,,ol2 (ui2+ u2a) sin (u + 4) 

Here U is an angle such that 

& = arctg 
uls.&o- UaSx,o 

zLISt,o - uasX,o 1 

If - a~, / 2 < a < n / 2 - e, then the minimax in the expression written above is 
achieved for v’ = e and u1 = u’. However,if rc / 2 - e < a < n / 2, then 

d =n/2- a and u1 = 0. From the physical sense of the problem it follows that 

the second case is realized when the original system arrives at the point (x1 = 0, 
~2 = 0) with u = 0. The set of such points is given by the equations 

5i = (emT - 1)x,, z2 = (e-T - 1)~~ 

Taking this circumstance into account, we get that the approximate minimax strategy 
is z&r = UO. From Theorem 3.2 follows the assertion that for each fixed 2 the 

solution .S” differs from the true solution of the Bellman equation by a quantity of or- 

der 0 (e”). 
The author thanks F. L. Chemous’ko, G. K. Pozharitskii and B. N. Sokolov for useful 

discussions of the paper and for remarks. 
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A solution is derived for the problem of unsteady motion of heavy fluid with a 
free surface in the vertical plane in a porous medium. Such problems are encoun- 
tered in irrigation and land improvement schemes in connection with the filtra- 
tion of ground waters. To use numerical and approximate methods for obtaining 
a solution of this fairly difficult problem one must be sure of its existence. The 
case when the heavy fluid occupies,at the initial instant of time,a finite region, 
is considered. An earlier investigation of this problem by the author [l] was based 
on some other assumptions with the heavy fluid occupying a semi-infinite region. 

Let region L occupied by a heavy fluid be mapped onto a unit circle in plane I; by 
means of function z (c, t) , where the time t is a parameter. At the initial instant of 
time 

In this representation the coordinate origin in the % -plane corresponds to a drain in the 
L region. Function z (6, t) which depends on the complex variable f and on time 
t must satisfy some boundary condition at subsequent instants. 

The velocity potential of the motion of a heavy fluid is 

where p is the pressure, k is the filtration coefficient, p is the density, and g is the 
acceleration of gravity. The velocity components are 


